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Pulse bifurcations and instabilities in an excitable medium: Computations in finite ring domains
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We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in par-
ticular, we discuss three different scenarios involving either the loss of stability or disappearance of stable
pulses. In numerical simulations beyond the instabilities we observe replication of pulses~‘‘backfiring’’ !
resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We
approximate the linear stability of traveling pulses through computations in a finite albeit large domain with
periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the
resulting spatiotemporal dynamics and ‘‘act’’ upon the back of the pulses. The first scenario has been analyzed
earlier@M. G. Zimmermannet al., Physica D110, 92 ~1997!# for high excitability~low excitation threshold!:
it involves the collision of a stable pulse branch with an unstable pulse branch in a so-calledT point. In the
framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits and theT
point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and
periodic boundary conditions. Numerical evidence of the proximity of the infinite-domainT point in this setup
appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an
entire cascade of saddle nodes causing a ‘‘spiraling’’ of the pulse branch appears near the parameter values
corresponding to the infinite-domainT point. Backfiring appears at the first saddle-node bifurcation, which
limits the existence region of stable pulses. The third case found in the model for large excitation threshold is
an oscillatory instability giving rise to ‘‘breathing,’’ traveling pulses that periodically vary in width and speed.

DOI: 10.1103/PhysRevE.64.046212 PACS number~s!: 82.40.Bj, 82.40.Ck, 05.45.2a
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I. INTRODUCTION

One-dimensional excitable media exhibit nonlinear tra
eling waves such as wave trains and solitary pulses.
amples include concentration waves in chemical reaction
solution and on surfaces@1–3# and signal propagation in
neurons and in cardiac tissue@4#. These processes are ofte
modeled by reaction-diffusion equations of activato
inhibitor type @4,5#. A pulse is a localized structure; it ma
result from a finite-amplitude perturbation of a linearly stab
rest state. The pulse shape usually decays exponentially
function of the distance from the pulse center. Pulses ca
analytically approximated in the asymptotic limit where t
dynamics of the activator is much faster than that of
inhibitor variable, and where the activator variable diffus
but the inhibitor does not. There, it can be shown that a pu
exists and is stable@5#.

More recently, spatiotemporal chaos has been found
variety of excitable model systems. Several examples h
been reported in models whose kinetics possess three dis
homogeneous steady states~fixed points!; apart from the
stable rest state, these media also exhibit two unstable fi
points@6–8#. One example arises in a model for catalytic C
oxidation, where the inhibitor is a so-called surface struct
variable; its kinetic nullcline displays a sigmoidal shape@9#.
In contrast to the standard linear dependence of the inhib
nullcline on the activator, this functional form leads to t
additional fixed points mentioned above. Similar behavio
often seen in models in physiology describing the dynam
of the membrane voltage~activator! controlled by so-called
gating variables for the ion channels~inhibitor!. The kinetics
of these gating variables display again a threshold-type,
1063-651X/2001/64~4!/046212~9!/$20.00 64 0462
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moidal dependence on the membrane voltage, often lea
to three~spatially homogeneous! fixed points for the partial
differential equation~PDE! @4#. If only a single gating vari-
able is involved, these models are qualitatively similar to
equations for catalytic CO oxidation studied here; a go
example is provided by the Morris-Lecar model used to
scribe the membrane potential in a barnacle muscle fi
@10#.

If the inhibitor kinetics are fast enough, the CO oxidatio
model displays an instability that has been colloquia
named backfiring of pulses@6#. Related phenomena includ
the wave-induced chemical chaos found in the Gray-S
model for an autocatalytic chemical reaction@7#, as well as
complex behavior in amplitude equations describing dyna
ics near a Takens-Bogdanov~TB! point @8#. In addition, even
reaction-diffusion media whose kinetics are characterized
a single fixed point sometimes display pulse instabilities a
backfiring under excitable conditions@11,12#. An analysis of
the traveling wave ordinary differential equations deriv
from the original PDEs for the CO oxidation model revea
the basic mechanism for the destruction of stable pulses l
ing to complex behavior: it involves a so-calledT point @13#
as well as a rich web of bifurcations of pulse solutions@14#.
More recently, a similar bifurcation structure has been fou
in a model for intracellular calcium waves in pancreatic a
nar cells @15# and in the ultrarefractory version of th
FitzHugh-Nagumo model@16#. The resulting complex dy-
namics is often governed by a coherent structure describe
a ‘‘wave emitting front’’ @13#, a nonlinear front involving a
spatially uniformunstablestate that invades a spatially un
form stable one. The unstable state behind the propaga
©2001 The American Physical Society12-1
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front evolves into spatiotemporal chaos. Similar behavior
been seen in the amplitude equations in the neighborhoo
the TB point, and was named ‘‘chaotic nucleation’’ by tho
authors@8#.

In this paper we investigate instabilities and bifurcatio
in a model of a catalytic surface reaction@9#. Using a
computer-assisted approach we calculate solution bran
in large, finite domains, under periodic boundary conditio
~which we will, with slight abuse of terminology, refer to a
pulses! and perform linear stability analysis of these pu
solutions. The eigenvalues of the corresponding Jacobian
flect the growth exponents of perturbation modes. The e
phasis of the present paper is on the form of the spectra
in particular on the shape of the critical modes; this is
contrast to earlier work which focused mostly on the pu
bifurcation structure@13,14#.

A homogeneous steady state of reaction-diffusion eq
tions in an infinite system possesses a continuous spect
reflecting the growth rates of perturbation modes. The eig
modes are harmonic functions, whose wave number par
etrizes the corresponding eigenvalues. In a very long or
finite system, a single pulse can conceivably be conside
~in the appropriate norm! as a perturbation of this uniform
solution. Under these circumstances, the modes far a
from the pulse are still delocalized, harmonic wave mod
the continuous spectrum remains essentially unchanged.
thermore, additional perturbation modes exist that are lo
ized at the site of the pulse and decay exponentially aw
from it. The corresponding eigenvalues are discrete, in c
trast to the continuous band of eigenvalues belonging to
nonlocalized modes. In infinite or periodic systems,
Goldstone mode is an example of such a localized mode
a spatially homogeneous system it is given by the spa
derivative of the pulse profile, and accounts for a shift
space~due to translational invariance!; the corresponding ei
genvalue is zero.

A bifurcation or instability of a given solution upo
change of a single control parameter is typically accom
nied by a single real eigenvalue or a pair of complex con
gate eigenvalues crossing the imaginary axis. For a rea
genvalue, a saddle-node bifurcation is the most comm
case, while alternative bifurcations like the transcritical
pitchfork bifurcations require certain symmetries for t
equations and the solution. The case of a drift pitchfork
furcation of a stationary pulse was studied in@17#. A desta-
bilizing perturbation grows in an oscillatory manner if th
eigenvalues are complex and in a nonoscillatory manne
the corresponding eigenvalue is real. The first case leads
Hopf bifurcation, while the latter case may correspond eit
to a saddle-node or to a transcritical or pitchfork bifurcatio

Three examples of dynamics where localized initial co
ditions beyond the uniform solution excitation threshold
not eventually evolve into stable pulses, are shown in Fig
For high excitability~small excitation threshold!, pulselike
initial conditions evolve in a traveling pulse that splits o
new pulselike excitations traveling in the opposite directio
This is the phenomenon termed backfiring in@6#. It can even-
tually evolve in spatiotemporally chaotic~I! or complex pe-
riodic ~II ! fashion. For large excitation threshold, modulat
04621
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traveling pulses are also seen~III !. Their shape undergoes
breathing, periodic variation.

II. MODEL AND METHODS

We investigate a model of activator-inhibitor type orig
nally derived for CO oxidation on Pt~110! @9#, in a parameter
regime where the kinetics give rise to one stable and
unstable steady homogeneous solutions. This model is
lated to the FitzHugh-Nagumo system and describes the
teraction of a fast activatoru and a slow inhibitor variablev:

] tu5]x
2u1

1

e
u~12u!S u2

b1v
a D ,

] tv5 f ~u!2v, ~1!

f ~u!5H 0, 0<u,1/3

126.75u~u21!2, 1/3<u<1

1, 1,u,

with xP@0,L# and periodic boundary conditions.
The time scale ratioe.0 is used as the control paramete

The case e→0 corresponds to the aforementione
asymptotic limit where stable pulses are expected. The
rameterb controls the excitability threshold of the system
the value ofb is proportional to the magnitude of the critica
perturbation that will trigger a pulse. The value ofa is fixed
at 0.84 throughout the paper. We will varyb, thus varying
the excitability. In the parameter range considered here, th
relevant fixed points exist: the stable stateA5(0,0), the
saddleB5(b/a,0), and the unstable focusC.

FIG. 1. Space-time plots from numerical integration of Eqs.~1!
showing the time evolution of pulses at parameter values bey
the instability onset. A stable pulse solution for a subcritical para
eter value, characterized by rest stateA, was used as the initia
condition. I: Backfiring in the immediate vicinity of aT point. The
resulting behavior is nonperiodic for the given system length a
initial conditions. II: Backfiring after a saddle-node bifurcation. T
resulting behavior is periodic in time for the given system leng
and initial conditions. III: A supercritical Hopf bifurcation leads t
modulated traveling waves. The pulse shows a periodic oscilla
of shape and speed; variations appear mainly at its trailing e
Black denotes high values ofu, white corresponds tou50. Param-
eters: I,b50.07, e50.1075, L5100, DT5119.2; II, b50.15, e
50.0931,L5100, DT5238.42; III, b50.2, e50.062, L550, to-
tal integration timeDT5238.42.
2-2
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PULSE BIFURCATIONS AND INSTABILITIES IN AN . . . PHYSICAL REVIEW E64 046212
We shall now examine the stability of pulses traveling
a background of the stable rest stateA. Since we investigate
solutions moving with fixed velocityc, the analysis of their
stability is performed in the comoving framezªx2ct:

] tu5]z
2u1c]zu1

1

e
u~12u!S u2

b1v
a D , ~2!

] tv5c]zv1 f ~u!2v.

In this frame, traveling waves with speedc correspond to
time independent, steady solutions. Linearization of th
equations around a stationary solutionu0(z),v0(z) yields an
eigenvalue problem for small perturbations„r (z,t),s(z,t)…
}„r (z),s(z)…elt:

MS r ~z!

s~z!
D 5lS r ~z!

s~z!
D ,

M5S ]z
21c]z1g1~z! g2~z!

]uf ~u0! c]z21
D ~3!

with

g1~z!52
1

e Fu0~u021!1S u02
b1v0

a D ~2u021!G ,
g2~z!5

u0

ea
~u021!.

The linear stability problem amounts to the determination
the spectrum of the JacobianM in Eq. ~3!. For the homoge-
neous steady statesA andB, at least one of the off-diagona
matrix elements is zero. Thus, the diagonal elements of
matrix M suffice to compute the spectrum. For theA steady
state it is

lA,152
b

ea
2k21 ick, lA,25211 ick, ~4!

and for theB steady state it is

lB,152
b

ea S b

a
21D2k21 ick, lB,25211 ick, ~5!

wherek is the wave number of the perturbation. In the ca
of periodic boundary conditions studied here,k5n2p/L ap-
plies. The real part of the eigenvaluesl2 is 21. The eigen-
vectors are then (r ,s)T5(1,0)Teikz and (0,1)Teikz.

In general, traveling wave solutionsu0(z), v0(z) and the
eigenfunctions of the JacobianM are not available in closed
form. Thus, the problem has to be approximated numerica
We approximate pulses by computing steady solutions
finite-length system and the traveling frame through a ps
dospectral discretization of Eqs.~2! with periodic boundary
conditions and Newton-Raphson iterations. The velocityc,
which is not knowna priori, is formally an additional vari-
able along with the Fourier coefficients of the solution. O
additional pinning condition singles out one of the infinite
04621
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many solutions existing due to translational invariance a
allows the numerical computation of the speed. The eig
functions and the spectrum of the Jacobian are obtaine
Fourier space resulting from a 200~250 for case I! mode
decomposition of the stationary solution. The zero eig
value, which always exists due to the translational symme
of the problem, is used as a numerical accuracy check
has been obtained with a precision of 1023 or better. The
time evolution of unstable solutions was computed using
explicit finite-difference scheme to solve Eqs.~1!, discretiz-
ing space in 1024 points and using a time step ofDt
50.0122.

Because traveling solutions satisfy the conditions] tu
5] tv50 in the comoving frame, they can also be obtain
in the traveling wave ordinary differential equation
~TWODEs! following from Eqs.~2!:

du

dz
5w,

dw

dz
52cw1

1

e
u~u21!~u2uth!, ~6!

dv
dz

5@v2 f ~u!#/c,

with uth5(b1v)/a. In this framework, a homogeneous s
lution corresponds to a fixed point, a pulse to a homocli
orbit, and a front to a heteroclinic orbit. Consequently, in t
parameter range studied here, three relevant fixed points
ist: A5(0,0,0), B5(b/a,0,0), and the focusC.

III. RESULTS

We consider three cases, at increasing values of the e
tation threshold, controlled through the parameterb at fixed
a50.84: case I (b50.07), case II (b50.15), and case III
(b50.20). We proceed as follows: first, branches of pu
solutions on a ring, representative of ‘‘true’’ pulse solutio
in an infinite domain, are presented for the relevant range
the control parametere; we characterize these pulses by th
speedc @Figs. 2 and 3~b!#. We then show pulse profiles an
spectra at selected values ofe shortly before and after the
onset of instability~Figs. 3, 7, and 8!, and present the desta
bilizing mode (r ,s)T @Figs. 6, 7, 8!#. Representative postin
stability spatiotemporal dynamics can be found in Fig. 1.

Figure 2 shows the pulse speed as a function of the
rametere for the three cases. The thick lines correspond
stable pulses with background stateA, while dashed lines
correspond to unstable pulses with background stateB. The
transition point between the two families is the so-calledT
point @23#, denoted by aT. This point is defined as a doubl
heteroclinic connection between the fixed pointsA andB in
the framework of the traveling wave ODEs, Eqs.~6!. In the
frame of the original equation~1!, these heteroclinic orbits
correspond to fronts. The branch of pulses correspondin
homoclinic orbits toA in the TWODEs may~Fig. 2, II and
III ! or may not~Fig. 2, I! spiral into theT point. Spiraling is
observed when two of the eigenvalues of the linearization
2-3
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FIG. 2. Pulse speed as a function of the parametere. I, b
50.07; II, b50.15; and III,b50.2. Thick lines are pulses with res
stateA ~i.e., pulses in a large box with periodic boundaries rep
sentative of pulses to the stateA on the infinite line corresponding
to the homoclinic orbits toA); thin lines are pulses with rest sta
B. Solid ~dashed! lines denote stable~unstable! branches.T marks
our approximation of the double heteroclinic connection point~the
T point! where pulses with rest stateA ‘‘collide’’ with pulses with
rest stateB. H denotes Hopf bifurcations; SN denotes saddle-no
bifurcations. In the cases II and III, the branch of pulses with r
stateA spirals into theT point. This is not the case for I@compare
Fig. 3~b!# below.
04621
the TWODE around the fixed pointB are complex conjugate
@13#.

A. Case I

Figure 2 panel I shows speed as a function of the par
etere for b50.07 computed for pulses in a large system w
periodic boundaries. The picture appears at first glance id
tical with the result found in a continuation of homoclin
orbits in the TWODE@13#. The branch of pulses toA ~thick
line! does not spiral into theT point. To be exact, theT point
exists only for pulses on the infinite line; what—at the res
lution of our picture—still appears as aT point will be dis-
cussed in more detail below. To understand the nature of
instability in this case, we focus on the solutions near thT
point valueeT'0.107 44.

As mentioned above, for an infinite system, the T po
corresponds to a double heteroclinic connection in the tr
eling wave ODEs, Eqs.~6!. Close toeT the orbits homoclinic

-

e
t

FIG. 3. ~a! Four pulse solutions on the ring from the midd
branch in~b! illustrating the gradual transformation from solution
identifiable with pulses with rest stateA (u50) to unstable solu-
tions identifiable with pulses with rest stateB (u50.083). TheB
domain in the wave form becomes wider upon decrease ofe, along
the middle branch in~b!. ~b! Bifurcation diagram, with respect toe,
of pulses for case I, exhibiting two saddle nodes. The thick so
line can be associated with stable pulses homoclinic toA; the thin
dashed line can be associated with unstable pulses homoclinicB.
The thick dashed line corresponds to the transition region betw
these two cases; it constitutes the incarnation~for our finite, large
ring length continuation! of the T point. When the upper saddle
node bifurcation (SN1) takes place, our finite ring length solutio
could still be described as an approximation of a pulse toA but with
a small B shoulder; the converse description holds at the low
saddle-node bifurcation (SN2). It is reasonable to consider as mo
representative of the infinite-domainT point the location, along this
thick-dashed line where the pulse solution contains compar
large patches close toA and close toB—roughly the middle of this
middle branch.
2-4
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FIG. 4. Spectra of pulses in case I for different values ofe. The solid lines correspond to the continuous spectrum of the rest stateA, Eqs.
~4! ~left parabola! @rest stateB ~right parabola!, Eqs.~5!#. The pictures show the typical change of the spectrum along the solution br
c2e. Parameters:a50.84, b50.07, L5200 @L5400 for picture ~d!#, ~a! e50.106 425 824, ~b! e50.107 446 965, ~c! e
50.107 446 995 547,~d! e50.1079,~e! e50.107 446 995 527, and~f! e50.109 936 154.
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to A also approach the fixed pointB ~and vice versa!; this
approach toB makes the dynamics inz progressively slower.
Thus, close toeT , pulses with rest stateA ~B! will also
exhibit extensive regions close toB (A), essentially giving
rise tofrontsbetweenA andB within the pulse profile. When
we perform a continuationfor a pulse in a ring of finite
length, the space on the ring is, apart from the excitat
plateau, divided between residence close toA and residence
close toB, so that the total period is constant as we varye.

To study this behavior, numerical continuation techniqu
are needed@18#. We computed the stationary solutions
Eqs. ~2! on a ring of lengthL5200 with 250 modes, 1024
collocation points, and a parameter step sizeDe
5O(10210). Periodic approximations of pulse solutions wi
rest stateA are shown in Fig. 3~a! as they approach theT
point and undergo the gradual transition to pulse soluti
with rest stateB. One can clearly recognize the increasi
domainB5(b/a,0) at the back of the pulse. As the stateB is
unstable, one might expect that the pulse in the ring will lo
stability as soon as theB domain gets large enough. How
ever, one should be aware of the fact that theB domain is
04621
s

s

e

moving with the speed of the pulse. It is possible that theB
domain is only convectively unstable in the comoving fram
In other words, the perturbations growing on theB state in a
stationary frame may spread more slowly than the pulse
tion, and the pulse in an infinite domain will be stable.
mathematically precise description of this phenomenon
been given by Sandstede and Scheel@19#. A related result
was obtained by Nii@20#, who shows that eigenvalues acc
mulate in the area bounded by the essential spectra ofA and
B. The opposite case, i.e., perturbations on theB plateau
spreading faster than the pulse speed, is described in the
subsection~case II!.

Typical spectra are shown in Fig. 4 for solutions along t
c2e branch. To facilitate a better comparison, the contin
ous spectra of the rest statesA @Eqs.~4!# andB @Eqs.~5!# are
depicted as solid lines; the computed eigenvalues are
noted by circles. Figure 4~a! shows the spectrum of a solu
tion approximating a stable pulse with rest stateA, while Fig.
4~f! shows that of a solution approximating an unstable pu
with rest stateB. In both cases, the parametere is ‘‘far’’
from the T-point bifurcation and the eigenvalues belongi
2-5
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to nonlocalized eigenvectors compare well with the conti
ous spectrum of the respective rest state. Figures 4~b!–4~e!
show the gradual transition between the two cases. Fig
4~b! shows the spectrum for a stable solution for which
domainB is just starting to appear in the back of the puls
Its width is LB'5. Several discrete eigenvalues have a
peared on the negative real axis; a similar spectrum was
dicted and found by Sandstede and Scheel@19#.

The details of the spectrum transformation are as follo
Initially @far to the left of theT point in Fig. 2~a!#, the pulse
spectrum contains two discrete complex conjugate eigen
ues ~which remain more or less unchanged through the
furcation diagram! as well as two ‘‘pieces’’ of continuous
spectrum: a parabola and a vertical line. For our calculati
in the finite domain, initially the parabola does have a ‘‘tip
~an eigenvalue on the real axis! while the vertical line does
not have an eigenvalue on the real axis. As we varye the
parabola approaches the straight line; eventually the para
appears ascrossingthe line. While this occurs, a number o
complex conjugate pairs of eigenvalues emerge from the
rabola and line approximating the essential spectrum. Fig
4~a! shows the situation where the first of these pairs
appeared. Upon further increase ofe, these pairs collapse o
the negative real axis where they split and become r
These real eigenvalues lie in the absolute spectrum of staB
~see @19#!; they appear when the solution has a visibleB
‘‘shoulder’’ behind the pulse; see Fig. 4~b!. As e varies these
real eigenvalues become complex conjugate. Several c
plex eigenvalue pairs of the parabola give the appearanc
a secondary parabola—this is the first intimation of what w
become the essential spectrum ofB. Only two of the ‘‘mo-
mentarily real’’ eigenvalues remain real—one of them for
the tip of the ‘‘new parabola,’’ while the other forms the t
of the ‘‘old parabola.’’

Gradually, as theB plateau grows, two distinct phases
spectrum movement are observed. First this n
B-associated parabola moves to the right in the comp
plane and at some point it starts crossing the imaginary a
That is precisely the first saddle-node bifurcation
observe—the critical eigenvalue is the tip of this second
parabola, whose origin we just discussed@see Fig. 4~c!#.
Continuing further on the middle, already unstable bran
the B domain gets wider and many secondary~apparently
Hopf! bifurcations occur as the eigenvalues of this ‘‘d
cretized’’ parabola successively cross the imaginary a
When bothA andB plateaus are equally present, one expe
to see echoes of bothA and B continuous spectra in th
solution spectrum, and that is indeed seen in Fig. 4d. N
the lower saddle-node bifurcation, theB plateau is almost as
wide as the system length. There, one may describe the
lution more reasonably as an approximation to a pulse w
rest stateB with a shortA domain at its front. The eigenvalu
spectrum in this situation is depicted in Fig. 4~e!. The second
~lower! turning point occurs when the ‘‘discretized’’ pa
rabola of eigenvalues that corresponded initially to the c
tinuous spectrum ofA moves to the right and the real eige
value at the tip of this discretized parabola crosses
imaginary axis.
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Eventually, the oldA parabola eigenvalues merge with th
B parabola as theA shoulder gradually disappears. Figu
4~f! shows the spectrum for a solution approximating a pu
with rest stateB far from the T-point bifurcation for high
values ofe. In the end, the two ‘‘tips’’~the old and the new
one! collide and become again a complex conjugate pai
the final pureB parabola has no real tip.

Sandstede and Scheel in@19# proved that the spectrum o
pulses with rest stateA with a ‘‘shoulder’’ of B state as in
Fig. 3~a! is comprised of the essential spectrum of the hom
geneous background stateA plus eigenvalues lying in the
absolute spectrum@21,22# of B located on the real axis an
bounded by a maximum value which is negative. We devi
from their picture, when theB shoulder becomes relativel
large. In other words, their result on the infinite line is repr
duced by our numerical stability analysis in the ring, if th
conditionLB!L holds. The spectrum transformations, ho
ever, reflect the influence of the periodic boundary con
tions and the finite length. Because of the violation of t
above assumption near theT point @see Fig. 3~a!# the spectra
we find for a large box are not well described as the union
the essential spectrum ofA and the absolute spectrum ofB.
The results of@19# also imply that if one considers pulses o
the infinite line instead of the large wavelength approxim
tion with periodic boundary conditions used here, one w
find a monotonic approach of the pulse branches to thT
point. In their scenario no eigenvalues are crossing the
axis upon approaching theT point ~in contrast to the compu
tations on the ring! and no bifurcation~like the saddle-node
bifurcation found for the ring! can occur.

Focusing on the first instability (SN1), the critical eigen-
mode corresponding to the saddle node appears localize
the back of the pulse~see Fig. 5!. In addition, it is acting
mainly on the activator@Fig. 5~b!#; we observe that new
pulses can now split off the existing pulse~‘‘backfiring’’ !.
Figure 6 shows the time evolution beyond the saddle-n
bifurcation in a comoving frame. The initial condition is th
stable pulse just before the bifurcation. Figure 6~a! shows
how a perturbation with support over theB plateau grows
with time, while the shape of the preceding front essentia
does not change. The back~which starts as theB plateau!
grows until its maximum reaches the excited stateu51. The

FIG. 5. ~a! Unstable pulse solution in case I in the vicinity of th
saddle-node bifurcation SN1, Fig. 3~b!. ~b! Destabilizing eigen-
mode. Parameters:a50.84, b50.07, e50.107 446 995 6,L5200.
Only part of the domain is shown.
2-6
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PULSE BIFURCATIONS AND INSTABILITIES IN AN . . . PHYSICAL REVIEW E64 046212
excited domain widens, but its plateau is unstable aga
oscillating perturbations@13#. Therefore, the situation rapidl
evolves, and the growing excited domain breaks down, g
ing rise to two new seeds forA-pulse-like entities. This be
havior has been described by the term ‘‘backfiring’’@6,13#.
Backfiring occurs repeatedly, and the newly generated pu
like structures annihilate upon collision with similar objec

FIG. 6. Time evolution for a value ofe after the saddle-node
bifurcation SN1 in a comoving frame. The initial condition is th
stable pulselike solution just before the bifurcation@thick black line
in ~a!#. The thin lines in~a! demonstrate how the shape of th
solution changes only at the back of the pulselike solution. A loc
ized perturbation grows in amplitude and width in the course
time and approaches the rest stateC, whereu51. Further evolution
of the dynamics is given by the dashed line in picture~b!. Due to
oscillatory instability of the homogeneous stateC, the correspond-
ing domain cannot become large. A breakdown leads to the gen
tion of two further pulselike states traveling in opposite directio
~thin solid line!.
04621
st

-

e-

traveling in the opposite direction; this interplay of instab
ity, new pulse generation, and annihilation gives rise to
nonperiodic space-time behavior shown in Fig. 1 panel I

Altogether, our results give an interesting and well r
solved picture of the stability of pulses on a large finite ri
near theT point. In contrast, earlier computations@13,14#
used coarser steps in the continuation algorithms and sm
domains. The present computations show how the pulse
lutions change in a gradual fashion; and that two disti
solution branches show an extremely narrow hysteresis;
middle branch mediates the transition between the two
ferent pulse types. The main changes appear in an extrem
tiny region of parameter space and can therefore be capt
only with careful numerics. The spectrum transformatio
near parameters that exhibit aT point in the corresponding
TWODEs appear in a similar fashion for cases II and
studied below. There, however, theT point is not involved in
the disappearance of stable traveling pulses through inst
ity and bifurcation. Thus, we will not discuss it in thes
cases.

B. Case II

Figure 2 panel II shows thec2e diagram forb50.15. As
in case I, we again observe here the transformation fr
pulses with rest stateA to pulses with rest stateB at what
appears like aT point. The branch corresponding to ‘‘pulse
to A’’ spirals into this T point. This behavior is caused b
imaginary eigenvalues of the fixed pointB in the TWODE at
the T point conditions, and has been predicted from gene
arguments@23#. Thus, the branch of initially stable pulse
with rest stateA undergoes a sequence of saddle-node bi
cations upon approaching theT point. This sequence o
saddle-node bifurcations is consistent with the results
Sandstede and Scheel@19#. The spectrum ofA pulses near
theT point in the infinite system approaches the union of
essential spectrum ofA and the absolute spectrum ofB. In
this case, however, the absolute spectrum ofB contains real
positive eigenvalues. One may therefore expect infinite
many saddle-node bifurcations as theT point is approached
In the stability-relevant first saddle-node bifurcation, the s
lution branch of stable wave trains with rest stateA turns
around and becomes unstable. As is required for a sad
node bifurcation, a single real eigenvalue crosses the im
nary axis. This can be seen in Fig. 7, left column. The t

l-
f

ra-
s

a

-

-

FIG. 7. Case II. ~a! Eigenvalues at e
50.0927 before a saddle-node bifurcation of
pulse decaying into the rest stateA; ~b! eigenval-
ues ate50.092 99 after this bifurcation. A dis
crete eigenvalue crosses the imaginary axis.~c!
Unstable solution and~d! corresponding destabi
lizing eigenmode (r ,s)T at e50.092 99. Param-
eters:a50.84, b50.15, L5100.
2-7
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FIG. 8. Case III.~a! Eigenvalues ate50.053
before a Hopf bifurcation;~b! eigenvalues ate
50.072 after this bifurcation. A discrete pair o
complex conjugated eigenvalues crosses
imaginary axis.~c! Unstable pulselike solution a
well as ~d! real and~e! imaginary parts of the
corresponding destabilizing eigenmode (r ,s)T at
e50.065. Parameters:a50.84, b50.2, L550.
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spectra correspond to pulselike solutions before and afte
saddle-node bifurcation along the solution branch. The
stable pulse and the destabilizing eigenmode are show
Fig. 7, right column. Once more, the destabilizing mode
fects primarily the back of the pulse. It is worth noting th
upon further continuation the branch of pulses toA spirals
toward theT-point-related situation over a cascade of sadd
node bifurcations. Each saddle-node bifurcation adds an
ditional positive eigenvalue to the spectrum. This is in co
trast to the study in@24#, where a single eigenvalu
repeatedly crosses zero along a spiraling pulse branch w
cascade of saddle-node bifurcations.

Numerical simulations of the model Eqs.~1! shortly after
the saddle-node bifurcation, for values ofe for which no
solution with rest stateA exists, exhibit the phenomenon w
termed above ‘‘backfiring.’’ In the transients, our pulseli
object generates near its back other pulselike entities tra
ing in the opposite direction~see Fig. 1 panel II!. After this
transient period, the resulting spatiotemporal pattern in
finite domain becomes periodic in time. Simulations sho
though, that this observation depends on the initial con
tions: nonperiodic patterns like the one shown in Fig. 1 pa
I may also appear for the same parameter values.

C. Case III

Figure 2 panel III shows thec2e diagram forb50.2.
Here, the pulse solution with rest stateA becomes unstable
through a Hopf bifurcation even before the first saddle-no
bifurcation is reached. The eigenvalue spectrum is show
Fig. 8, left column, on both sides of this Hopf bifurcation.
can be seen that one discrete pair of complex conjugate
genvalues crosses the imaginary axis. The second colum
Fig. 8 shows the pulselike solutionafter the bifurcation as
well as the real and imaginary parts of the critical eigenmo
(r ,s)T. Note that the perturbation due to the eigenmode
localized and has its main contribution—once more—at
back of the pulse. As the corresponding eigenvalues are c
plex conjugate, the resulting perturbation oscillates with ti
at a frequency given by the imaginary part of the eigenv
ues.

Numerical integration of the model Eqs.~1! shows that
the Hopf bifurcation that leads to destabilization is sup
critical @14#. The resulting pattern after destabilization co
sists of amodulatedtraveling pulse which oscillates in time
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especially at its back~compare the simulation shown in Fig
1 panel III.!

IV. CONCLUSION

We have investigated the transition from stable pu
propagation to various regimes of more complicated s
tiotemporal dynamics, namely, modulated pulses and p
odic and chaotic pulse backfiring. In all three cases, the tr
sition can be explained by either a Hopf instabili
~modulated pulses! or a saddle-node bifurcation~leading to
backfiring! of the stable pulse solution. In all cases, the tra
sition is connected with either a single or a pair of comp
conjugate eigenvalue~s! with zero real part~s!. In a finite do-
main with periodic boundary conditions—the typical expe
mental setup for investigation of pulses—spectra cha
continuously near theT point in the fashion described in cas
I. The form of the corresponding critical eigenmode~s! al-
lows some insight into how pulses become unstable~evolve
in space and time!. The dynamics in general still contain
mostly propagating localized pulselike structures whose e
lution is governed by the unstable eigenmode~s! in the Hopf
case~modulated! or by the critical eigenmode of the saddl
node bifurcation. Typically, the critical eigenmodes ha
support at the back of the pulse.

The results here should carry over to models with sim
phenomenology mentioned in the Introduction. Prelimina
results@25# show that the transition to wave-induced chem
cal chaos in the Gray-Scott model@7# is also caused by a
saddle-node bifurcation of pulses near aT point.T points can
be found only in systems with multiple homogeneous fix
points~e.g., one stable rest state and two additional unsta
steady states!. The complex behavior seen in media with
single stable fixed point@11,12# may be caused through
different mechanism. For a model of the catalytic NO-C
reaction, upon change of the control parameter, first mo
lated traveling waves are seen and then periodic backfirin
found. This cannot be due to aT point, but may instead be
caused by a global bifurcation of the periodic modulat
pulses—a scenario already suggested in a study of
present model with different control parameters@14#. Finally,
it is important to note that a simple instability of a finite
wavelength pulse solution, like the Hopf bifurcation in ca
III, leads only to a modulation of the shape, while a sadd
2-8
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node bifurcation limits the existence of a certain type
pulse and may give rise to replication of pulselike structu
~cases I and II!. The role of saddle-node bifurcations in th
replication of pulses and creation of space-time defects
recently been investigated in the Gray-Scott model@26# and
in the complex Ginzburg-Landau equation@27#.
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