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Pulse bifurcations and instabilities in an excitable medium: Computations in finite ring domains
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We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in par-
ticular, we discuss three different scenarios involving either the loss of stability or disappearance of stable
pulses. In numerical simulations beyond the instabilities we observe replication of pliteekfiring” )
resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We
approximate the linear stability of traveling pulses through computations in a finite albeit large domain with
periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the
resulting spatiotemporal dynamics and “act” upon the back of the pulses. The first scenario has been analyzed
earlier[M. G. Zimmermanret al, Physica D110, 92 (1997] for high excitability (low excitation threshold
it involves the collision of a stable pulse branch with an unstable pulse branch in a soTalteat. In the
framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits dnd the
point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and
periodic boundary conditions. Numerical evidence of the proximity of the infinite-dompmint in this setup
appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an
entire cascade of saddle nodes causing a “spiraling” of the pulse branch appears near the parameter values
corresponding to the infinite-domaih point. Backfiring appears at the first saddle-node bifurcation, which
limits the existence region of stable pulses. The third case found in the model for large excitation threshold is
an oscillatory instability giving rise to “breathing,” traveling pulses that periodically vary in width and speed.
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[. INTRODUCTION moidal dependence on the membrane voltage, often leading
to three(spatially homogeneouidixed points for the partial
One-dimensional excitable media exhibit nonlinear trav-differential equationPDE) [4]. If only a single gating vari-
eling waves such as wave trains and solitary pulses. Exable is involved, these models are qualitatively similar to the
amples include concentration waves in chemical reactions iequations for catalytic CO oxidation studied here; a good
solution and on surfacefl—3] and signal propagation in example is provided by the Morris-Lecar model used to de-
neurons and in cardiac tiss{4]. These processes are often scribe the membrane potential in a barnacle muscle fiber
modeled by reaction-diffusion equations of activator-[10].
inhibitor type[4,5]. A pulse is a localized structure; it may  |f the inhibitor kinetics are fast enough, the CO oxidation
result from a finite-amplitude perturbation of a linearly stablemodel displays an instability that has been colloquially
rest state. The pulse shape usually decays exponentially ass\@amed backfiring of pulse$]. Related phenomena include
function of the distance from the pulse center. Pulses can bge wave-induced chemical chaos found in the Gray-Scott
analytically approximated in the asymptotic limit where the j,qqe| for an autocatalytic chemical reactiphl, as well as
dynamics of the activator is much faster than that of the,gmpiex hehavior in amplitude equations describing dynam-
|nh|b|t0( van_able, and where the.act|vator variable dlffuses,iCS near a Takens-Bogdan6uB) point[8]. In addition, even
bu.t the |nh|p|tor does not. There, it can be shown that a puIS?eaction-diffusion media whose kinetics are characterized by
exists and is stablEs]. . . . : ) . o
. . a single fixed point sometimes display pulse instabilities and
More recently, spatiotemporal chaos has been found in Kfiri q itabl ditiofis1,12. A vsis of
variety of excitable model systems. Several examples hav%?c Irng under excitable conditions=, 4. An analysis o
been reported in models whose kinetics possess three disti © travelln_g_wave ordinary d|fferent!al _equatlons derived
homogeneous steady statéixed points; apart from the rom thg original F’DES for the CO o_X|dat|on model reveals
stable rest state, these media also exhibit two unstable fixd§€ basic mechanism for the destruction of stable pulses lead-
points[6—8]. One example arises in a model for catalytic CONG to complex behavior: it involves a so-call&point [13]
oxidation, where the inhibitor is a so-called surface structuréS Well as a rich web of bifurcations of pulse solutipns].
variable; its kinetic nullcline displays a sigmoidal shdpe  More recently, a similar bifurcation structure has been found
In contrast to the standard linear dependence of the inhibitdf @ model for intracellular calcium waves in pancreatic aci-
nullcline on the activator, this functional form leads to thenar cells [15] and in the ultrarefractory version of the
additional fixed points mentioned above. Similar behavior isFitzHugh-Nagumo mode]16]. The resulting complex dy-
often seen in models in physiology describing the dynamicsiamics is often governed by a coherent structure described as
of the membrane voltag@ctivatoy controlled by so-called a “wave emitting front” [13], a nonlinear front involving a
gating variables for the ion channélshibitor). The kinetics  spatially uniformunstablestate that invades a spatially uni-
of these gating variables display again a threshold-type, sigorm stable one. The unstable state behind the propagating
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front evolves into spatiotemporal chaos. Similar behavior has I
been seen in the amplitude equations in the neighborhood of
the TB point, and was named “chaotic nucleation” by those
authors[8].

In this paper we investigate instabilities and bifurcations
in a model of a catalytic surface reactidf]. Using a
computer-assisted approach we calculate solution branches
in large, finite domains, under periodic boundary conditions
(which we will, with slight abuse of terminology, refer to as
pulse$ and perform linear stability analysis of these pulse t 1
solutions. The eigenvalues of the corresponding Jacobian re-
flect the growth exponents of perturbation modes. The em- FIG. 1. Space-time plots from numerical integration of Hds.
phasis of the present paper is on the form of the spectra ariglowing the time evolution of pulses at parameter values beyond
in particular on the shape of the critical modes; this is inthe instability onset. A stable pulse solution for a subcritical param-

contrast to earlier work which focused mostly on the pulseeter value, characterized by rest stétewas used as the initial

bifurcation structurd 13,14 condition. I: Backfiring in the immediate vicinity of @ point. The
o P e resulting behavior is nonperiodic for the given system length and

A homogeneous steady state of reaction-diffusion equa|nitial conditions. 1l: Backfiring after a saddle-node bifurcation. The

tions in an infinite system possesses a continuous SpeCtrurrne’sulting behavior is periodic in time for the given system length

reflecting the growth rates of perturbation modes. The €19€M 4 initial conditions. I11: A supercritical Hopf bifurcation leads to

modes are harmonic functions, whose wave number paranmyqqulated traveling waves. The pulse shows a periodic oscillation

e_tr,'zes the Corres,pondmg eigenvalues. ,In a very long _or N5t shape and speed; variations appear mainly at its trailing edge.

finite system, a single pulse can conceivably be considereg|ack denotes high values af white corresponds ta=0. Param-

(in the appropriate norjmas a perturbation of this uniform eters: | h=0.07, €=0.1075,L =100, AT=119.2: Il b=0.15, €

solution. Under these circumstances, the modes far away 0931, =100, AT=238.42: Ill,b=0.2, e=0.062, L =50, to-

from the pulse are still delocalized, harmonic wave modesta| integration timeAT=238.42.

the continuous spectrum remains essentially unchanged. Fur-

thermore, additional perturbation modes exist that are localraveling pulses are also seélil ). Their shape undergoes a

ized at the site of the pulse and decay exponentially awayreathing, periodic variation.

from it. The corresponding eigenvalues are discrete, in con-

trast to t_he continuous band_o_f eigenvall_Jes_ belonging to the Il. MODEL AND METHODS

nonlocalized modes. In infinite or periodic systems, the

Goldstone mode is an example of such a localized mode. In We investigate a model of activator-inhibitor type origi-

a spatially homogeneous system it is given by the spatiahally derived for CO oxidation on Pt10) [9], in a parameter

derivative of the pulse profile, and accounts for a shift inregime where the kinetics give rise to one stable and two

space(due to translational invariangethe corresponding ei- unstable steady homogeneous solutions. This model is re-

genvalue is zero. lated to the FitzHugh-Nagumo system and describes the in-
A bifurcation or instability of a given solution upon teraction of a fast activatar and a slow inhibitor variable:

change of a single control parameter is typically accompa-

nied by a single real eigenvalue or a pair of complex conju-

gate eigenvalues crossing the imaginary axis. For a real ei-

genvalue, a saddle-node bifurcation is the most common

case, while alternative bifurcations like the transcritical or du="f(u)—v, (1)

pitchfork bifurcations require certain symmetries for the

equations and the solution. The case of a drift pitchfork bi- 0, O<u<1/3

furcation of a stationary pulse was studied 17Y]. A desta-

bilizing perturbation gr)(/)vss in an oscillatory manner if the f(u)= 1-6.78(u=1)% 1/3<u<1

eigenvalues are complex and in a nonoscillatory manner if 1, 1<u,

the corresponding eigenvalue is real. The first case leads to a

Hopf bifurcation, while the latter case may correspond eithewvith xe[0,L] and periodic boundary conditions.

to a saddle-node or to a transcritical or pitchfork bifurcation. The time scale ratie>0 is used as the control parameter.
Three examples of dynamics where localized initial con-The case e—0 corresponds to the aforementioned

ditions beyond the uniform solution excitation threshold doasymptotic limit where stable pulses are expected. The pa-

not eventually evolve into stable pulses, are shown in Fig. 1rameterb controls the excitability threshold of the system:

For high excitability (small excitation threshojd pulselike  the value ofb is proportional to the magnitude of the critical

initial conditions evolve in a traveling pulse that splits off perturbation that will trigger a pulse. The valueabis fixed

new pulselike excitations traveling in the opposite direction.at 0.84 throughout the paper. We will vaby thus varying

This is the phenomenon termed backfirindh It can even-  the excitability. In the parameter range considered here, three

tually evolve in spatiotemporally chaotit) or complex pe- relevant fixed points exist: the stable state=(0,0), the

riodic (II) fashion. For large excitation threshold, modulatedsaddleB=(b/a,0), and the unstable foc&

)

/1111,
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/1111

)
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) 1 b+v
du=d u+ ;u(l—u) ,
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We shall now examine the stability of pulses traveling inmany solutions existing due to translational invariance and
a background of the stable rest stateSince we investigate allows the numerical computation of the speed. The eigen-
solutions moving with fixed velocitg, the analysis of their functions and the spectrum of the Jacobian are obtained in
stability is performed in the comoving franze=x— ct: Fourier space resulting from a 20250 for case )l mode
decomposition of the stationary solution. The zero eigen-
value, which always exists due to the translational symmetry
of the problem, is used as a numerical accuracy check and
has been obtained with a precision of £0or better. The
dv=cdp+f(u)—v. time evolution of unstable solutions was computed using an
explicit finite-difference scheme to solve Ed$), discretiz-

In this frame, traveling waves with speedcorrespond t0 ing space in 1024 points and using a time step Adf
time independent, steady solutions. Linearization of these-g.0122.

b+v
), v

1
atu=a§u+cazu+;u(1—u)<u—

equations around a stationary solutia(z),vo(2) yields an Because traveling solutions satisfy the conditiohs
eigenvalue p{(t)blem for small perturbatiofi{z,t),s(z,t)) =40 =0 in the comoving frame, they can also be obtained
*(r(2),s(2))e" in the traveling wave ordinary differential equations

[2) r(z)) (TWODES following from Egs.(2):

=\ ,
s(2)) "ls(2) du_ .,
dz '
92+ci+91(2)  ga(2)
= ¢ () dw 1
duf (Uo) ci—1 g = CWF Cu(u=1)(u—uy), (6)

with

dv
+vg EI[v—f(U)]/C,

1 b
91(2):_; Uo(Uo_1)+(Uo_ )(Zuo_l)},

with uy,=(b+wv)/a. In this framework, a homogeneous so-
Ug lution corresponds to a fixed point, a pulse to a homoclinic
92(2)= _ (Up—1). orbit, and a front to a heteroclinic orbit. Consequently, in the
parameter range studied here, three relevant fixed points ex-
The linear stability problem amounts to the determination ofist: A=(0,0,0), B=(b/a,0,0), and the focuf.
the spectrum of the Jacobiav in Eq. (3). For the homoge-

neous steady staté#sandB, at least one of the off-diagonal . RESULTS

matrix elements is zero. Thus, the diagonal elements of the ) ) ) )
matrix M suffice to compute the spectrum. For thateady We consider three cases, at increasing values of the exci-
state it is tation threshold, controlled through the paramdtet fixed

a=0.84: case | (=0.07), case Il $=0.15), and case Il
(b=0.20). We proceed as follows: first, branches of pulse

A=~ e—a—k2+|ck, A= —1+ick, (4 solutions on a ring, representative of “true” pulse solutions
in an infinite domain, are presented for the relevant range of
and for theB steady state it is the control parametet; we characterize these pulses by their
speedc [Figs. 2 and &)]. We then show pulse profiles and
b (b o . spectra at selected values efshortly before and after the
Ne1=— |z 1) ~KHick, Agp=—1+ick, (5 (nset of instability(Figs. 3, 7, and B and present the desta-

bilizing mode ¢,s)" [Figs. 6, 7, 8]. Representative postin-
wherek is the wave number of the perturbation. In the casestability spatiotemporal dynamics can be found in Fig. 1.

of periodic boundary conditions studied hekes n2#/L ap- Figure 2 shows the pulse speed as a function of the pa-
plies. The real part of the eigenvaluegis —1. The eigen- rametere for the three cases. The thick lines correspond to
vectors are thenr(s)"=(1,0)"'e’* and (0,1Ye'*. stable pulses with background stake while dashed lines

In general, traveling wave solutiong(z), vy(z) and the correspond to unstable pulses with background fafEhe
eigenfunctions of the JacobiaW are not available in closed transition point between the two families is the so-called
form. Thus, the problem has to be approximated numericallypoint [23], denoted by &. This point is defined as a double
We approximate pulses by computing steady solutions in &eteroclinic connection between the fixed poiAtandB in
finite-length system and the traveling frame through a pseuthe framework of the traveling wave ODEs, E@). In the
dospectral discretization of Eq&) with periodic boundary frame of the original equatiofil), these heteroclinic orbits
conditions and Newton-Raphson iterations. The velocjty correspond to fronts. The branch of pulses corresponding to
which is not knowna priori, is formally an additional vari- homoclinic orbits taA in the TWODEs mayFig. 2, Il and
able along with the Fourier coefficients of the solution. Onelll ) or may not(Fig. 2, I) spiral into theT point. Spiraling is
additional pinning condition singles out one of the infinitely observed when two of the eigenvalues of the linearization of
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18 FIG. 3. (a) Four pulse solutions on the ring from the middle
branch in(b) illustrating the gradual transformation from solutions
Q15 identifiable with pulses with rest stafe (u=0) to unstable solu-
tions identifiable with pulses with rest staBe(u=0.083). TheB
// domain in the wave form becomes wider upon decreasg along
1.4 7 the middle branch irtb). (b) Bifurcation diagram, with respect &g
7 of pulses for case |, exhibiting two saddle nodes. The thick solid
line can be associated with stable pulses homoclinig;tthe thin
13 007 008 0.09 01 011 dashed line can be associated with unstable pulses homocliBic to
e The thick dashed line corresponds to the transition region between
these two cases; it constitutes the incarnation our finite, large
111 ring length continuationof the T point. When the upper saddle-
node bifurcation (SN takes place, our finite ring length solution
— could still be described as an approximation of a puls& bt with
15 \:‘:\\( } a small B shoulder; the converse description holds at the lower
\\:\\ saddle-node bifurcation (SIN It is reasonable to consider as most
\\::\ representative of the infinite-domalhpoint the location, along this
13 7 thick-dashed line where the pulse solution contains comparable
7 large patches close # and close td—roughly the middle of this
o T /// middle branch.
1.1 H \\/‘///
\\\\ the TWODE around the fixed poiit are complex conjugate
\\\
o H/\Q,/SN [13].
0.04 0.08 0.08 0.1 A. Case |

Figure 2 panel | shows speed as a function of the param-
etere for b=0.07 computed for pulses in a large system with
periodic boundaries. The picture appears at first glance iden-
tical with the result found in a continuation of homoclinic
orbits in the TWODH 13]. The branch of pulses ta (thick

FIG. 2. Pulse speed as a function of the parametel, b
=0.07; Il b=0.15; and Ill,b=0.2. Thick lines are pulses with rest

stateA (i.e., pulses in a large box with periodic boundaries repre-. - - .
sentative of pulses to the staeon the infinite line corresponding line) does not spiral into th& point. To be exact, th& point

to the homoclinic orbits to4); thin lines are pulses with rest state exists only for pulses on the infinite line; what—at the reso-

B. Solid (dashed lines denote stabléunstablé branchesT marks lution Of_ our picturefstill appears asTapoint will be dis-
our approximation of the double heteroclinic connection paine ~ cussed in more detail below. To understand the nature of the

T point where pulses with rest stafe“collide” with pulses with ~ instability in this case, we focus on the solutions nearfhe
rest stateB. H denotes Hopf bifurcations; SN denotes saddle-nodeP0Int valueer~0.107 44.

bifurcations. In the cases Il and IIl, the branch of pulses with rest As mentioned above, for an infinite system, the T point
stateA spirals into theT point. This is not the case for[compare ~ corresponds to a double heteroclinic connection in the trav-

Fig. 3(b)] below. eling wave ODEs, Eqg6). Close toet the orbits homoclinic
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FIG. 4. Spectra of pulses in case | for different valueg.dfhe solid lines correspond to the continuous spectrum of the reststates.
(4) (left parabola [rest stateB (right parabol® Egs.(5)]. The pictures show the typical change of the spectrum along the solution branch
c—e. Parameters:a=0.84, b=0.07, L=200 [L=400 for picture (d)], () €=0.106425824, (b) €=0.107 446965, (c) €
=0.107 446 995 547(d) €=0.1079,(e) €=0.107 446 995527, and) €=0.109 936 154.

to A also approach the fixed poiit (and vice versg this ~ moving with the speed of the pulse. It is possible thatBhe
approach ta3 makes the dynamics inprogressively slower. domain is only convectively unstable in the comoving frame.
Thus, close toer, pulses with rest staté (B) will also  In other words, the perturbations growing on fistate in a
exhibit extensive regions close ® (A), essentially giving stationary frame may spread more slowly than the pulse mo-
rise tofrontsbetweenA andB within the pulse profile. When tion, and the pulse in an infinite domain will be stable. A
we perform a continuatiorfior a pulse in a ring of finite mathematically precise description of this phenomenon has
length the space on the ring is, apart from the excitationbeen given by Sandstede and ScHdadl]. A related result
plateau, divided between residence closétand residence was obtained by Nij20], who shows that eigenvalues accu-
close toB, so that the total period is constant as we vary mulate in the area bounded by the essential spectraaoid

To study this behavior, numerical continuation techniquesB. The opposite case, i.e., perturbations on Biglateau
are needed18]. We computed the stationary solutions of spreading faster than the pulse speed, is described in the next
Egs.(2) on a ring of lengthL =200 with 250 modes, 1024 subsectior(case ).
collocation points, and a parameter step sizee Typical spectra are shown in Fig. 4 for solutions along the
=0(10 19 Periodic approximations of pulse solutions with c— e branch. To facilitate a better comparison, the continu-
rest stateA are shown in Fig. @) as they approach th€  ous spectra of the rest staté$Eqs.(4)] andB [Eqgs.(5)] are
point and undergo the gradual transition to pulse solutionslepicted as solid lines; the computed eigenvalues are de-
with rest stateB. One can clearly recognize the increasingnoted by circles. Figure(d) shows the spectrum of a solu-
domainB=(b/a,0) at the back of the pulse. As the st8tes  tion approximating a stable pulse with rest staevhile Fig.
unstable, one might expect that the pulse in the ring will losed(f) shows that of a solution approximating an unstable pulse
stability as soon as thB domain gets large enough. How- with rest stateB. In both cases, the parameteris “far”
ever, one should be aware of the fact that Badomain is  from the T-point bifurcation and the eigenvalues belonging
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to nonlocalized eigenvectors compare well with the continu- 1=

ous spectrum of the respective rest state. Figutbs—4(e) _

show the gradual transition between the two cases. Figure 05 _— \L: '\|

4(b) shows the spectrum for a stable solution for which the o \

domainB is just starting to appear in the back of the pulse. ]

Its width is Lg~5. Several discrete eigenvalues have ap- b

peared on the negative real axis; a similar spectrum was pre- 05 | -_r

dicted and found by Sandstede and Sch#®). “j\
The details of the spectrum transformation are as follows. 0

Initially [far to the left of theT point in Fig. 2a)], the pulse 0 100

spectrum contains two discrete complex conjugate eigenval- X

ues (Wh'Ch 'remaln more or less unchanged thro“gh the bi- FIG. 5. (a) Unstable pulse solution in case | in the vicinity of the
furcation diagramas well as two “pieces” of continuous  gaqdie-node bifurcation SN Fig. 3b). (b) Destabilizing eigen-
spectrum: a parabola and a vertical line. For our calculationg,ode. Parametersi=0.84, b=0.07, e=0.107 446 995 6| = 200.

in the finite domain, initially the parabola does have a “tip” Only part of the domain is shown.

(an eigenvalue on the real axiwhile the vertical line does

not have an eigenvalue on the real axis. As we varjie Eventually, the oldA parabola eigenvalues merge with the

parabola approaches the straight line; eventually the parabo@ parabola as thé\ shoulder gradually disappears. Figure

appears asrossingthe line. While this occurs, a number of A(F) shows the spectrum for a solution approximating a pulse

complex conjugate pairs of eigenvalues emerge from the PR%ith rest stateB far from the T-point bifurcation for high

rabola and line appro>_<imating the ess_ential spectrum._ Figur@alues ofe. In the end, the two “tips”(the old and the new
4(a) shows the S|tuat|oq where the first of-these pairs ha%ne) collide and become again a complex conjugate pair—
appeared. Upon further increaseepfthese pairs collapse on ne final pureB parabola has no real tip.
the negative real axis where they split and become real. gandstede and Scheel[it9] proved that the spectrum of
These real eigenvalues lie in the absolute spectrum of Btate py|ses with rest statd with a “shoulder” of B state as in
(see[19]); they appear when the solution has a visiBle Fig. 3a) is comprised of the essential spectrum of the homo-
“shoulder” behind the pulse; see Fig(®). As € varies these geneous background stage plus eigenvalues lying in the
real eigenvalues become complex conjugate. Several conabsolute spectruf21,22 of B located on the real axis and
plex eigenvalue pairs of the parabola give the appearance dunded by a maximum value which is negative. We deviate
a secondary parabola—this is the first intimation of what willfrom their picture, when th& shoulder becomes relatively
become the essential spectrumBfOnly two of the “mo-  large. In other words, their result on the infinite line is repro-
mentarily real” eigenvalues remain real—one of them formsduced by our numerical stability analysis in the ring, if the
the tip of the “new parabola,” while the other forms the tip conditionLg<<L holds. The spectrum transformations, how-
of the “old parabola.” ever, reflect the influence of the periodic boundary condi-
Gradually, as thd3 plateau grows, two distinct phases of tions and the finite length. Because of the violation of the
spectrum movement are observed. First this newabove assumption near tigoint[see Fig. 83)] the spectra
B-associated parabola moves to the right in the complexve find for a large box are not well described as the union of
plane and at some point it starts crossing the imaginary axishe essential spectrum éf and the absolute spectrum Bf
That is precisely the first saddle-node bifurcation weThe results of19] also imply that if one considers pulses on
observe—the critical eigenvalue is the tip of this secondaryhe infinite line instead of the large wavelength approxima-
parabola, whose origin we just discussie Fig. 4c)].  tion with periodic boundary conditions used here, one will
Continuing further on the middle, already unstable branchfind a monotonic approach of the pulse branches toTthe
the B domain gets wider and many second&apparently  point. In their scenario no eigenvalues are crossing the real
Hopf) bifurcations occur as the eigenvalues of this “dis- axis upon approaching thepoint (in contrast to the compu-
cretized” parabola successively cross the imaginary axistations on the ringand no bifurcatior(like the saddle-node
When bothA andB plateaus are equally present, one expectdifurcation found for the ringcan occur.
to see echoes of botA and B continuous spectra in the Focusing on the first instability (Sl), the critical eigen-
solution spectrum, and that is indeed seen in Fig. 4d. Neamode corresponding to the saddle node appears localized at
the lower saddle-node bifurcation, tBeplateau is almost as the back of the pulsésee Fig. 5. In addition, it is acting
wide as the system length. There, one may describe the smainly on the activatofFig. 5(b)]; we observe that new
lution more reasonably as an approximation to a pulse withpulses can now split off the existing pul§é&ackfiring” ).
rest stateB with a shortA domain at its front. The eigenvalue Figure 6 shows the time evolution beyond the saddle-node
spectrum in this situation is depicted in Fige®t The second bifurcation in a comoving frame. The initial condition is the
(lowen turning point occurs when the “discretized” pa- stable pulse just before the bifurcation. Figur@) 6shows
rabola of eigenvalues that corresponded initially to the conhow a perturbation with support over tige plateau grows
tinuous spectrum ofA moves to the right and the real eigen- with time, while the shape of the preceding front essentially
value at the tip of this discretized parabola crosses theloes not change. The baéwhich starts as th@® plateay
imaginary axis. grows until its maximum reaches the excited statel. The
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1 a traveling in the opposite direction; this interplay of instabil-
ity, new pulse generation, and annihilation gives rise to the
075 | nonperiodic space-time behavior shown in Fig. 1 panel I.

Altogether, our results give an interesting and well re-
solved picture of the stability of pulses on a large finite ring
near theT point. In contrast, earlier computatiof$3,14]
used coarser steps in the continuation algorithms and smaller
0.25 | domains. The present computations show how the pulse so-
lutions change in a gradual fashion; and that two distinct
ol . solution branches show an extremely narrow hysteresis; the

45 50 55 60 65 70 75 80 middle branch mediates the transition between the two dif-
z ferent pulse types. The main changes appear in an extremely
tiny region of parameter space and can therefore be captured
only with careful numerics. The spectrum transformations
near parameters that exhibitTapoint in the corresponding
TWODESs appear in a similar fashion for cases Il and llI
studied below. There, however, tligooint is not involved in
the disappearance of stable traveling pulses through instabil-
ity and bifurcation. Thus, we will not discuss it in these
cases.

0.75
35 05 ¢

0.25
B. Case Il

Figure 2 panel Il shows the— e diagram forb=0.15. As
in case |, we again observe here the transformation from
pulses with rest staté to pulses with rest statB at what
appears like & point. The branch corresponding to “pulses

stable pulselike solution just before the bifurcatjtimick black line fto A”. Splral§ into this T point. _Thls beh?“"or is caused by
in (@)]. The thin lines in(a) demonstrate how the shape of the |mag|nary elgen\_/glues of the fixed polin t_he TWODE at
solution changes only at the back of the pulselike solution. A local-tN€ T point conditions, and has been predicted from general
ized perturbation grows in amplitude and width in the course ofafguments23]. Thus, the branch of initially stable pulses
time and approaches the rest stafavhereu=1. Further evolution ~ With rest stateA undergoes a sequence of saddle-node bifur-
of the dynamics is given by the dashed line in pictdse Due to ~ cations upon approaching the point. This sequence of
oscillatory instability of the homogeneous st&ethe correspond- saddle-node bifurcations is consistent with the results of
ing domain cannot become large. A breakdown leads to the gener&andstede and Schedl9]. The spectrum ofA pulses near
tion of two further pulselike states traveling in opposite directionsthe T point in the infinite system approaches the union of the
(thin solid line. essential spectrum @& and the absolute spectrum Bf In

this case, however, the absolute spectrunB @bntains real
excited domain widens, but its plateau is unstable againgiositive eigenvalues. One may therefore expect infinitely
oscillating perturbationgl3]. Therefore, the situation rapidly many saddle-node bifurcations as th@oint is approached.
evolves, and the growing excited domain breaks down, givin the stability-relevant first saddle-node bifurcation, the so-
ing rise to two new seeds fak-pulse-like entities. This be- lution branch of stable wave trains with rest stétgurns
havior has been described by the term “backfiring;13].  around and becomes unstable. As is required for a saddle-
Backfiring occurs repeatedly, and the newly generated pulserode bifurcation, a single real eigenvalue crosses the imagi-
like structures annihilate upon collision with similar objects nary axis. This can be seen in Fig. 7, left column. The two

FIG. 6. Time evolution for a value of after the saddle-node
bifurcation SN in a comoving frame. The initial condition is the

5 a < 0.8
_ peesem, 0.6
g oo > 5 04 i
sous . S FIG. 7. Case Il. (a Eigenvalues ate
peeest 0.2 =0.0927 before a saddle-node bifurcation of a
_5 . 0 1 pulse decaying into the rest stake(b) eigenval-
5 . 0.8 ues ate=0.092 99 after this bifurcation. A dis-
'13“ 0.6 crete eigenvalue crosses the imaginary afGs.
2 ""---..\ . » 0.4 Unstable solution an€d) corresponding destabi-
E O ——— . o 0.2 lizing eigenmode K,s)" at e=0.092 99. Param-
pasoeone® . eters:a=0.84,b=0.15, L=100.
5 > 0]
-5 -3 - 1
Re(h) X
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’1a . 0.8
c
~ 1 \ > 0.4 —
=2 = \ —— v
E O 0.0 - .
= FIG. 8. Case lll.(a) Eigenvalues at=0.053
-1 & before a Hopf bifurcation{b) eigenvalues at
oL . g o d N, =0.072 after this bifurcation. A discrete pair of
2 3 % \Y/ complex conjugated eigenvalues crosses the
1 %o, o T 4 imaginary axis(c) Unstable pulselike solution as
=3 \ _ well as (d) real and(e) imaginary parts of the
E 0 £ o0 € __¢<\/e\ corresponding destabilizing eigenmodes)” at
-1 .w'/ R ;: €=0.065. Parametersi=0.84,b=0.2, L=50.
2 P T4
6 5 -4 -3 2 1 0 15 20 25 30 35
X

Re(})

spectra correspond to pulselike solutions before and after thespecially at its backcompare the simulation shown in Fig.
saddle-node bifurcation along the solution branch. The uni panel Ill)
stable pulse and the destabilizing eigenmode are shown in

Fig. 7, right column. Once more, the destabilizing mode af- IV. CONCLUSION
fects primarily the back of the pulse. It is worth noting that _ . -
upon further continuation the branch of pulsesAtspirals We have investigated the transition from stable pulse

toward theT-point-related situation over a cascade of saddlefpropagation to various regimes of more complicated spa-
node bifurcations. Each saddle-node bifurcation adds an adiotemporal dynamics, namely, modulated pulses and peri-
ditional positive eigenvalue to the spectrum. This is in con-odic and chaotic pulse backfiring. In all three cases, the tran-
trast to the study in[24], where a single eigenvalue sition can be explained by either a Hopf instability
repeatedly crosses zero along a spiraling pulse branch with @odulated pulsgsor a saddle-node bifurcatiofieading to
cascade of saddle-node bifurcations. backfiring of the stable pulse solution. In all cases, the tran-
Numerical simulations of the model Eq4) shortly after  sition is connected with either a single or a pair of complex
the S-addle-'nOde bifurcati(_)n, for values effor which no Conjugate eigenvahﬂ@ with zero real pa(s) In a finite do-
solution with rest statjq exists, exhibit thfa phenomenon we main with periodic boundary conditions—the typical experi-
termed above “backfiring.” In the transients, our pulselike pental setup for investigation of pulses—spectra change

object generates near its back other pulselike entities traveqntinyously near the point in the fashion described in case
INg N the opposite d|rect|o(see Fig. 1 panel JI After this | “ppa form of the corresponding critical eigenmésleal-

2 - L9 OREE . ) fows some insight into how pulses become unstdébl®lve
finite domain becomes periodic in time. Simulations show, ; o : :

) . - ’in space and time The dynamics in general still contains
though, that this observation depends on the initial condi- ostlv bropagating localized pulselike structures whose evo-
tions: nonperiodic patterns like the one shown in Fig. 1 pane utionyispgol?/e?nedgby the uns?able eigenmiilén the Hopf
| may also appear for the same parameter values. case(modulated or by the critical eigenmode of the saddle-
. case Il node bifurcation. Typically, the critical eigenmodes have

' support at the back of the pulse.

Figure 2 panel Ill shows the— e diagram forb=0.2. The results here should carry over to models with similar
Here, the pulse solution with rest staigbecomes unstable phenomenology mentioned in the Introduction. Preliminary
through a Hopf bifurcation even before the first saddle-nodaesults[25] show that the transition to wave-induced chemi-
bifurcation is reached. The eigenvalue spectrum is shown igal chaos in the Gray-Scott modgl] is also caused by a
Fig. 8, left column, on both sides of this Hopf bifurcation. It saddle-node bifurcation of pulses nedr point. T points can
can be seen that one discrete pair of complex conjugate ebe found only in systems with multiple homogeneous fixed
genvalues crosses the imaginary axis. The second column pbints(e.g., one stable rest state and two additional unstable
Fig. 8 shows the pulselike soluticafter the bifurcation as steady statgs The complex behavior seen in media with a
well as the real and imaginary parts of the critical eigenmodesingle stable fixed poinf11,12 may be caused through a
(r,s)". Note that the perturbation due to the eigenmode iglifferent mechanism. For a model of the catalytic NO-CO
localized and has its main contribution—once more—at thegeaction, upon change of the control parameter, first modu-
back of the pulse. As the corresponding eigenvalues are contated traveling waves are seen and then periodic backfiring is
plex conjugate, the resulting perturbation oscillates with timefound. This cannot be due toTpoint, but may instead be
at a frequency given by the imaginary part of the eigenvalcaused by a global bifurcation of the periodic modulated
ues. pulses—a scenario already suggested in a study of the

Numerical integration of the model Egél) shows that present model with different control parametgt4]. Finally,
the Hopf bifurcation that leads to destabilization is super4t is important to note that a simple instability of a finite-
critical [14]. The resulting pattern after destabilization con-wavelength pulse solution, like the Hopf bifurcation in case
sists of amodulatedraveling pulse which oscillates in time, I, leads only to a modulation of the shape, while a saddle-
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